Sparse and Low Rank Recovery

نویسنده

  • Holger Rauhut
چکیده

Compressive sensing (sparse recovery) is a new area in mathematical image and signal processing that predicts that sparse signals can be recovered from what was previously believed to be highly incomplete measurement [3, 5, 7, 12]. Recently, the ideas of this field have been extended to the recovery of low rank matrices from undersampled information [6, 8]; most notably to the matrix completion problem [4, 11]. A vector x ∈ C is called s-sparse if ‖x‖0 := #{`, x` 6= 0} ≤ s. In practice, vectors will usually not be exactly s-sparse, but can be well-approximated by a sparse vector. In order to quantify this notion one introduces the best s-term approximation error in `p by σs(x)p := infz∈C,‖z‖0≤s ‖x− z‖p. Informally, a vector x is called compressible if σs(x)p decays quickly in s. The basic task of compressive sensing is to recover a sparse (or compressible) vector from undersampled linear information, that is, from y = Ax ∈ C, A ∈ Cm×N

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse and Low-rank Matrix Decomposition via Alternating Direction Methods

The problem of recovering the sparse and low-rank components of a matrix captures a broad spectrum of applications. Authors in [4] proposed the concept of ”rank-sparsity incoherence” to characterize the fundamental identifiability of the recovery, and derived practical sufficient conditions to ensure the high possibility of recovery. This exact recovery is achieved via solving a convex relaxati...

متن کامل

Recovery of Sparse and Low Rank Components of Matrices Using Iterative Method with Adaptive Thresholding

In this letter, we propose an algorithm for recovery of sparse and low rank components of matrices using an iterative method with adaptive thresholding. In each iteration, the low rank and sparse components are obtained using a thresholding operator. This algorithm is fast and can be implemented easily. We compare it with one of the most common fast methods in which the rank and sparsity are ap...

متن کامل

A Nonconvex Free Lunch for Low-Rank plus Sparse Matrix Recovery

We study the problem of low-rank plus sparse matrix recovery. We propose a generic and efficient nonconvex optimization algorithm based on projected gradient descent and double thresholding operator, with much lower computational complexity. Compared with existing convex-relaxation based methods, the proposed algorithm recovers the low-rank plus sparse matrices for free, without incurring any a...

متن کامل

S-semigoodness for Low-Rank Semidefinite Matrix Recovery

We extend and characterize the concept of s-semigoodness for a sensing matrix in sparse nonnegative recovery (proposed by Juditsky , Karzan and Nemirovski [Math Program, 2011]) to the linear transformations in low-rank semidefinite matrix recovery. We show that ssemigoodness is not only a necessary and sufficient condition for exact s-rank semidefinite matrix recovery by a semidefinite program,...

متن کامل

Sufficient Conditions for Low-rank Matrix Recovery, Translated from Sparse Signal Recovery

The low-rank matrix recovery (LMR) is a rank minimization problem subject to linear equality constraints, and it arises in many fields such as signal and image processing, statistics, computer vision, system identification and control. This class of optimization problems is NP-hard and a popular approach replaces the rank function with the nuclear norm of the matrix variable. In this paper, we ...

متن کامل

Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this paper we consider a convex optimization formulation to splitting the specified mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011